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ABSTRACT
Despite their increasing sophistication, wireless sensor net-
works still do not exploit the most powerful of the human
senses: vision. Indeed, vision provides humans with un-
matched capabilities to distinguish objects and identify their
importance. Our work seeks to provide sensor networks
with similar capabilities by exploiting emerging, cheap, low-
power and small form factor CMOS imaging technology. In
fact, we can go beyond the stereo capabilities of human vi-
sion, and exploit the large scale of sensor networks to pro-
vide multiple, widely different perspectives of the physical
phenomena.

To this end, we have developed a small camera device
called Cyclops that bridges the gap between the compu-
tationally constrained wireless sensor nodes such as Motes,
and CMOS imagers which, while low power and inexpensive,
are nevertheless designed to mate with resource-rich hosts.
Cyclops enables development of new class of vision applica-
tions that span across wireless sensor network. We describe
our hardware and software architecture, its temporal and
power characteristics and present some representative ap-
plications.

Categories and Subject Descriptors: B.0 [Hardware]:
General; D.2.11 [Software]: Software Engineering: Software
Architectures

General Terms: Performance, Design, Measurement, Ex-
perimentation

Keywords: Sensor Network, Vision, Imaging, CMOS Imag-
ing, Power Efficiency

1. INTRODUCTION
Today as we make progress toward making sophisticated,
reliable and low power sensor networks [1] [2], we still face
difficulties in collecting useful data from our environment.
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Figure 1: Cyclops is a smart vision sensor that
will be controlled by a low power micro-controller
host. This picture shows Cyclops with an attached
MICA2 Mote [4]

Most low power sensors are constrained by limited cou-
pling to their environment. While vision can reveal immense
amount of information about the surrounding environment,
there are serious obstacles for using vision in wireless sen-
sor networks. Vision sensors are typically power hungry
and vision algorithms are computationally expensive, with
high power consumption requirements [3]. In wireless sen-
sor networks, vision can only play a meaningful role if the
power consumption of the network node is not significantly
increased. Networks with a large number of vision-sensing
nodes should utilize algorithms that consume less power.
Scalability in number would 1) overcome occlusion effects,
2) provide multiple perspectives and 3) provide closer views
of the phenomena (or objects). This may enable the appli-
cation of lightweight vision algorithms, with lossy inferences
that can be reinforced through multiple observations and
interpretation in the network.

On the sensor side,the emergence of integrated CMOS
camera modules with low power consumption and moder-
ate imaging quality [6] [7] brings such dreams closer to re-
ality. These modules are widely used in electronic gadgets
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Figure 2: Diagram shows Hardware architecture of
first generation of Cyclops.

such as cell phones and personal digital assistants (PDAs).
They typically include a lens, an image sensor, and an image
processing circuit in a small package. In spite of this high
level of integration, these devices are still difficult to apply
in lightweight sensor network nodes. Image data must be
captured synchronously at high rates and programming is
complex.

Cyclops (Fig-1) attempts to overcome these difficulties.
It is an electronic interface between a camera module and
a lightweight wireless host. Cyclops contains programmable
logic and memory circuits for high-speed data transfer. It
also contains a micro-controller (MCU) that presents a sim-
ple interface to the outside world. It isolates the camera
module’s requirement for high-speed data transfer from the
low-speed capability of the embedded controller, providing
still image frames at low rates. Since capturing and interpre-
tation of an image is potentially time consuming, separate
computational resources are used for imaging and communi-
cation. This is particularly important for network-enabled
nodes which experience asynchronous events (e.g. MAC
layer event) with stringent delay constraint requirements.

Cyclops power consumption is minimal to enable large
scale deployment and extended lifetime. This results in ex-
treme constraints in its computational power and imaging
size. This makes Cyclops appealing for particular classes of
applications. Any application that requires high speed pro-
cessing or high resolution images should utilize a different
imaging platform.

The rest of this paper describes the architecture of the
Cyclops sensor and analyzes its characteristics. It further
discuss Cyclops software framework, provides timing analy-
sis of different operations and Cyclops energy requirements
in its different states. Finally it presents two example appli-
cations that further illustrate Cyclops capability. Our future
work will apply this architecture to distributed imaging ap-
plications.

2. HARDWARE
The main principles in Cyclops hardware design are:

• low power consumption, on the order of a sensor net-
work node (e.g. Mote) [4] [5].

• simple interfacing that separates the complexity of the
vision algorithm from the network node.

• adaptivity to make it a flexible sensor for applicability
to a variety of sensor network problems.

To achieve this Cyclops exploits 1) Computational paral-
lelism to isolate prolonged sensing computations 2) on-demand
control of clocking resources to decrease power consumption
3) on-demand access to memory by using an external SRAM
for storing image frames and 4) capability for automatic re-
laxation of each subsystem to its lower power state. Next,
we describe Cyclops hardware organization and its individ-
ual components.

2.1 Hardware Organization
Cyclops consists of an imager, a micro-controller (MCU),

a complex programmable logic device (CPLD), an external
SRAM and an external Flash (Fig-2). The MCU controls
the Cyclops sensor. It can set the parameters of the imager,
instruct the imager to capture a frame and run local com-
putation on the image to produce an inference. The CPLD
provides the high speed clock, synchronization and memory
control that is required for image capture. The combina-
tion of the MCU and the CPLD provides the low power
benefits of a typical MCU with on-demand access to high
speed clocking through a CPLD. Furthermore, the CPLD
can perform a limited amount of image processing such as
background subtraction or frame differentiation at capture
time. This results in extremely economical use of resources
since the CPLD is already clocking at the capture time.
When MCU does not need the CPLD services it halts its
clock to minimize power consumption.

Cyclops uses external SRAM to increase the limited amount
of internal MCU memory and provide the necessary memory
for image storage and manipulation. In essence, the external
memory provides us on-demand access to memory resources
at the capture and computation time. The SRAM is kept in
sleep state when the memory resources are not needed. In
addition, Cyclops has an external Flash memory. The Flash
memory provides permanent data storage for functions such
as template matching or local file storage.

The MCU and CPLD and both memories share a common
address and data bus. This facilitates easy data transfer be-
tween the imager, SRAM and FLASH memory but it also
requires an appropriate mechanism that guarantees synchro-
nized access to such shared resources. This will be further
described in Cyclops firmware discussion.

Each module in Cyclops has several power states. Typ-
ically the lowest power consumption sleep states have the
highest wake-up cost. Consequently, the application should
choose the sleep level based on its amortized cost. In ad-
dition Cyclops has an Asynchronous Trigger input. This
can be used as a paging channel in applications that are
characterized by prolonged sleep times and quick response
to asynchronous ambient variations. The paging channel
can be connected to sensors of other modalities for event
triggering. For example it could be connected to a passive
IR detector or a microphone to trigger image capture on
motion, or connected to a magnet sensor to monitor a tran-
sition (e.g. opening and closing gates). Next we describe
each component more elaborately.



Figure 3: ADCM-1700 camera module block di-
gram. It consist of an F2.8 lens, image sensor and
digitizer, image processing units and data commu-
nication units.

2.2 Imager
The main requirement for the camera module is low power

consumption. We chose a medium quality imager with mod-
erate clock speed requirements and extremely low power
consumption in its sleep state. It is an ultra compact CIF
resolution CMOS camera module (ADCM-1700) from Agi-
lent Technology. It combines an Agilent CMOS image sensor
and processor with a high quality lens. The lens has a fo-
cal length of 2.10mm with practical focal lenght of almost
100mm to infinity and has 52 deg field of view. Its clock
frequency can be set to anywhere from 4 to 32 MHz. We set
the imager clock to 4MHz to provide the CPLD (which op-
erates at 16MHz clock), enough time to grab an image pixel
and copy it into the memory. The image sensor (Fig-3) has
CIF resolution (352×288). The output of the image array is
digitized by a set of ADCs to generate the raw image data.
The camera module contains a complete image processing
pipeline. The pipeline performs demosaicing (reconstruc-
tion), image size scaling, color correction,tone correction
and color space conversion. It also implements automatic
exposure control and automatic white balancing. Cyclops
generally operates on images of reduced resolution because
of its constrained memory and power.

The camera module has two parameters for adjusting the
size of the image. Input window size determines the array
of sensor pixels selected from the total number of available
pixels (352 × 288) and output window size determines the
number of pixels in the output image. When the input win-
dow size is greater than the output window size, the camera
module averages the input pixels to generate the result. The
image output is normally taken from the center of the field
of view of the sensing array. An offset can be adjusted to
pan the region of interest across the field of view.

The image processing unit is capable of generating variety
of image formats. Currently Cyclops supports three image
formats of 8-bit monochrome, 24-bit RGB color, and 16-bit
YCbCr color. The camera module is programmable through
a synchronous serial I2C port. Many low level parameters
such as exposure time and color balance may be accessed.
Data is output over a parallel bus consisting of eight data
lines and three synchronization lines.

2.3 Micro-controller
The MCU is responsible for controlling Cyclops, commu-

nicating with the host and performing image inference. Most
notably, by providing separate processing power, it isolates
sensing and networking computations from each other. This
is very important since Cyclops computations are poten-
tially prolonged and might block highly asynchronous net-
work operations. The Cyclops micro-controller(MCU) is an
ATMEL ATmega128L [8]. It has an 8-bit RISC core pro-
cessor with a 16-bit address Harvard architecture. It has
an arithmetic logic unit that provides a multiplier support-
ing both signed/unsigned multiplication and fractional for-
mat. It provides general purpose registers, internal oscilla-
tors, timers, UARTs and other peripherals. In Cyclops, the
MCU operates at 7.3728MHz and 3.3V .

The system is very memory constrained: it has 128KB of
Flash program memory and 4KB of SRAM data memory.
The MCU is designed such that it can map 60KB of exter-
nal memory into its memory space. The combination of the
internal and external memory presents a continuous and co-
hesive memory space. External memory accesses are slower,
but this is invisible from a programming perspective. The
external SRAM is referred to as extended Memory since it
extends the Cyclops memory to the maximum addressable
64KB.

The processor integrates a set of timers which can be con-
figured to generate interrupts at regular intervals. This can
be used to make Cyclops a synchronous sensor or an asyn-
chronous sensor exploiting an underlying synchronous sam-
pling mechanism. The MCU has two clock domains, the
main clock for processor and I/O, and external timer clock
for independent timer and clock operation. It has six sleep
modes: idle, ADC noise reduction, power-down, power-save,
standby and extended standby. Typically Cyclops is either
active, in power-save(PS) or in power-down(PD) mode. In
power-down mode, MCU shuts everything but the I2C and
asynchronous interrupt logic necessary for wake up. Power-
save mode is similar to the power down mode, but leaves
an asynchronous timer running. This enables Cyclops to go
into a deep sleep mode leaving an underlying synchronous
timer operational for periodic sensing services.

2.4 CPLD
Image capture requires faster data transfer and address

generation than what a lightweight processor can provide.
To satisfy this requirement we use a complex programmable
logic device (CPLD) as a lightweight frame grabber. The
CPLD provides 1) on-demand access to high speed clocking
at capture time and 2) (potentially) computation as image
capture is underway (e.g. calculating statistics such as his-
togram at capture time). The use of an FPGA was rejected
because the high power required during initial configuration
would have increased the amortized cost of the power-down
state. Provisions have been provided to further save power
by disabling the CPLD clock and by removing power from
the entire memory subsystem (CPLD and memories).

A Xilinx XC2C256 CoolRunner CPLD was chosen for
its low power consumption. This device consists of six-
teen Function Blocks inter-connected by a low power Ad-
vanced Interconnect Matrix (AIM). The AIM feeds 40 true
and complement inputs to each Function Block. The Func-
tion Blocks consist of a 40 by 56 Programmable Logic Array
(PLA) and 16 macrocells which contain numerous configu-



ration bits that allow for combinational or registered modes
of operation. It has 256-macrocell device and 80 user I/Os.
The CPLD runs at 1.8V , obtained from a dedicated voltage
regulator, and has quiescent current of as low as 13µA. It
runs from a 16MHZ input clock and feeds a 4MHz clock to
the imager at the capture time. We picked the CPLD’s clock
to be higher than the imager clock to allow a certain amount
of image processing on the CPLD at image capturing time.

2.5 SRAM and FLASH
Cyclops needs memory for image buffering and local in-

ference processing. It uses external CMOS static random
access memory (SRAM) which provides 64KB 1 in 8bits
format ( TC55VCM208A from TOSHIBA). The device op-
erates from a single 2.3V to 3.6V power supply to support
extended battery operation. It provides both high speed
and low power at an operating current of 3mA/MHz and a
minimum cycle time of 40ns. The memory is automatically
placed in low-power mode at 0.7µA standby current when it
is in not in use.

In addition, Cyclops has 512KB of CMOS Flash pro-
grammable and erasable read only memory (AT29BV040A
from ATMEL) which is organized in 8bits format. This pro-
vides Cyclops with permanent storage to save information
(e.g. templates). It operates from 2.7V to 3.6V for extended
battery operation and has auto-sleep functionality of 40µA
current when it is in no use.

2.6 Other Components
Cyclops has three MOSFET switches for power control.

One switch can completely turn off the device, the second
switch activates the memory subsystem (SRAM, CPLD and
Flash) and the third switch activates the imager. These
switches can override the normal auto-shutdown procedure
of the devices to achieve further reduction in power con-
sumption.

3. SOFTWARE
The motivation for our Cyclops firmware design is:

• transparency in using resources (such as the imager or
SRAM) while supporting their automatic relaxation to
the lowest possible power state.

• supporting the long computations that are needed for
image operations.

• supporting synchronized access by both the MCU and
the CPLD to shared resources such as SRAM and the
imager.

This implies that, unlike a network-centeric approach that
calls for handling a high degree of network asynchronous
events, the Cyclops architecture should target sequential im-
age capture and processing. Thus following a frame capture,
Cyclops calls a series of potentially long synchronous oper-
ations with little concurrency.

1Since it is difficult to obtain memory chips with less than
512KB of capacity, we used SRAM and FLASH memories
which are 512KB and we have organized each of the memo-
ries as eight 64kB banks, with the bank address selected by
the CPLD. We are currently using only the lowest bank in
each device. This obviously has additional power cost due
to lack of the off-the-shelf 64KB memory.
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Figure 4: Component layouts in Cyclops. The com-
ponents consist of the main sensing application, the
libraries that encapsulate image manipulation logic
and the devices that enable communication with
hardware components.

To efficiently utilize Cyclops constrained resources, Cy-
clops firmware is written in the nesC [9] language and runs
in TinyOS [10] operating system environment. This helps
the Cyclops software architecture to abstract functionalities
in the form of components with clear interfaces and exploit
standard TinyOS scheduler and services. Next, we describe
Cyclops software organization, its components and its image
capturing and control stack (i.e. Active Eye).

3.1 Software Organization
There are three sets of components in Cyclops (Fig-4):

drivers, libraries and the sensor Application. Drivers are
the set of components that enable the MCU to communi-
cate with peripherals. Examples of drivers are the imager
setting and capturing drivers, CPLD drivers, Flash mem-
ory drivers and drivers that enable communication with the
host Mote. There are two different class of libraries: prim-
itive structural analysis libraries and high level algorithmic
libraries. Among the very important structural libraries are
the variety of matrix operation, statistics and histogram op-
eration. These libraries are key to processing raw images.
Other libraries are closer to application (algorithm) such as
background subtraction, object detection or motion vector
recognition libraries that are designed to do specific high
level tasks. Finally the sensor Application is the main sens-
ing component on Cyclops. It receives commands from the
host and is responsible for performing necessary sensing op-
erations as requested by the host. It is the sensing applica-
tion that makes Cyclops a smart sensor.

In Cyclops, external address and data bus are shared
among many entities including MCU, SRAM, FLASH and
CPLD. Consequently devices may contend for bus access.
The SRAM and Flash are slave devices, hence a mechanism
is only necessary for the synchronization of MCU and CPLD
bus access. We modified TinyOS scheduler to support Di-
rect Memory Access for such synchronized bus usage. When
CPLD needs access to the bus (e.g. capturing an image) the
CPLD driver requests the scheduler a permit to perform a
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Direct Memory Access (DMA) transaction. On completion
of the current active task such a permit is granted by the
scheduler and CPU goes to power-save mode (power-down if
there is no active timer). At the end of the transaction, the
CPLD will notify the scheduler that it may resume normal
operation. In essence there are two mechanisms that guar-
antees safe access of each component to memory: 1) the
default mode in which the MCU controls the SRAM mem-
ory and 2) the DMA mode in which the scheduler sleeps.
This combination means that any external memory access
in the TinyOS task routines happens while the MCU has ac-
cess to the SRAM. Libraries should be implemented in task
context and this leverages access to the external memory
without any additional synchronization requirement.

3.2 Active Eye: Image Capturing and Control
Layer

The Active Eye Layer (AEL) enables Cyclops to see the
external world . It is the Cyclops image capture and control
stack and is responsible for communicating with the imager,
setting its parameters, keeping it in proper state, and finally
capturing the image. It consists of different components that
exist in the MCU and CPLD (Fig-5). The rest of this section
describes Active Eye components and their interactions.

The main component in the AEL is the image capture
and control module. It uses subordinate control modules
for controlling the imager. These modules are responsible
for changing different aspects of the image. Examples of
these modules are a window size module that is responsi-
ble for setting the input and output size window; a format
module which is responsible for setting image format (i.e.
monochrome, RGB color, etc); and an exposure module
which sets capture exposure parameters. All these mod-
ules use the imager communication component to access the
camera over the imager I2C bus.

The AEL uses the CPLD for image data capture and
manipulation. The CPLD modules consist of the CPLD
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Figure 6: This picture shows the flow of data at cap-
ture time. Active Eye enables the camera module
clock, sets capture parameters and snaps the image.
It then requests a DMA transaction from the sched-
uler and the MCU goes to sleep when the transac-
tion is granted. The camera module provides data
via a parallel bus that includes vertical and horizon-
tal synchronization signals. The CPLD receives the
image data stream and saves it into memory. Upon
capture of a complete frame, the CPLD notifies the
MCU and a normal MCU operation resumes.

driver inside the MCU and data driver inside the CPLD.
The CPLD data driver module is written in Verilog Hard-
ware Descriptive Language. It is essentially a state ma-
chine with different states trajectories that are selected by
micro-controller commands. The micro-controller places the
CPLD on the proper state by programming the CPLD’s in-
ternal registers and by asserting control over CPLD hand-
shake lines. To capture an image, the AEL first enables the
imager module clock and updates the capture parameters
(if they have been modified). It further places the cam-
era module in video output mode and sets the CPLD state
to capture mode. Upon completion, the CPLD notifies the
MCU that it may resume operation and relaxes to standby
mode. Fig-6 illustrates this process.

There are three interfaces that facilitate access to AEL:
“StdControl”, “snap” and “captureParameters”. The “Std-
Control” enables initialization, starting and stopping of the
AEL stack. At starting routine AEL turns ON imager power
supply, waits for a predetermined time for the imager to be
accessible (i.e. 200ms) and sets the initialization parame-
ters in the imager via its I2C bus. Starting the AEL should
happen only once, AEL then always relaxes to its lowest pos-
sible state by disabling imager clock when it is not needed.
Still, application can stop Active Eye Layer in cases with
extremely low duty cycling to further reduce power con-
sumption. In such cases they should start AEL before using
it again.

The second interface is “captureParameters” which en-
ables the user to provide AEL with new capture conditions.
Capture parameters should only set once and will be pre-
served afterward. This means that in constant capture con-
ditions this interface would be called once. Cyclops capture
parameters structure is as follows:



typedef struct CYCLOPS_Capture_Parameters
{

wpos_t offset;
wsize_t inputSize;
uint8_t testMode;
uint16_t exposurePeriod;
color8_t analogGain;
color16_t digitalGain;
uint16_t runTime;

}CYCLOPS_Capture_Parameters;

The input size (a two element structure) determines the size
of of the input region of interest (ROI). In practice these val-
ues can be between 24-288 for image height and 24-352 for
its width. The offset (another two element structure) de-
termines the position of the ROI within the field of view
(FOV), relative to the center of the array. Modification of
this parameter enables the user to pan across the image sen-
sor window. The test mode parameter can be used to obtain
a synthetic test image. The exposure period controls the du-
ration of the exposure. The analog and digital gains control
the amount of gain that is applied to each color channel.
The camera module can also determine the exposure and
gain values automatically. The run time parameter causes
the camera to run for an additional period before capture
begins in order to allow the auto functions to converge.

The third interface is “snap” which should be called each
time an image capture is required. To snap the image the
desired snap condition such as image type, its height and
width, and its memory location should be set in the image
data structure. The snap interface then returns the image,
filling the desired memory location with the image content.
Cyclops image data structure is as follows:

typedef struct CYCLOPS_Image
{

uint8_t type;
uint16_t size;
uint8_t nFrames;
uint8_t *imageData;
bufferPtr imageHandle;

}CYCLOPS_Image;

The type specifies the image format (i.e. monochrome, RGB,
etc). The size is the output image size. “nFrames” specifies
the number of sequential frames to capture in memory. The
“imageData” is a pointer to the image location in memory.
The imageHandle is a memory handler (pointer to memory
pointer) when dynamic memory is available. Currently we
allocate memory statically.

3.3 Libraries
TinyOS does not provide a preemptive mechanism in its

synchronous execution model (i.e., tasks cannot preempt
tasks). This means that a synchronous task will run to
completion when not preempted by an interrupt handler.
Consequently, long running tasks can block access to com-
putational resources, thereby starving other tasks. A basic
design principle of TinyOS is that long-running tasks should
be broken down into smaller tasks that are posted sequen-
tially. In this manner, a large block of processing can explic-
itly yield the processor at predetermined safe points during
its execution to promote fairness and prevent starvation. In
network-enabled sensor nodes, task-yielding is particularly
important to cope with asynchronous requirements of the
network

Image processing operations are typically long-running
and not suitable for sequential decomposition. The conse-
quence of loading a sensor network node with processing the

Library Operation
Matrix Image to Matrix Conversion
Matrix Matrix to Image Conversion
Matrix Extracting a particular plane in an image

e.g. red plane in RGB or Cb in YCbCr
Matrix Extract Row
Matrix Extract Column
Matrix Threshold
Matrix Clone Matrix
Logic matrix AND operation
Logic matrix OR operation
Logic matrix XOR operation
Logic matrix-wide shift right operation
Logic matrix-wide shift left operation
Arithmetic matrix Addition
Arithmetic matrix Subtraction
Arithmetic matrix Scaling
Statistics minimum,max,summation
Histogram histogram generation
Sobel Matrix derivative vs. hight and width
Template Provides hollow or solid rectangles

of different sizes

Table 1: This table shows different primitive li-
braries and the operations that they currently sup-
port. These operations are supported on matrices of
different depth such as one, eight or sixteen, when
applicable.

image is a significant increase in implementation complexity
to break long image processing operations into pieces. This
in turn results in reduction of performance of the system. In
our case, due to existence of dedicated processor we build
an execution model that supports continent serialization of
image processing operations. When an image is captured,
one expects a series of potentially long computational blocks
with limited concurrency requirements. This gives Cyclops
the liberty of using prolonged computations in the TinyOS
synchronous model. Cyclops libraries are implemented in
long tasks with potential delays of hundreds of milliseconds.
In addition since the libraries are not pending for any event
they do not use the TinyOS split-phase call-back model.
This means that the result of their computation is readily
available at the completion of their execution. This greatly
simplifies implementation of any algorithm using Cyclops
libraries.

Libraries are divided in two categories: primitive struc-
tural libraries such as matrix operation libraries or histogram
libraries and advanced libraries such as coordinate conver-
sion and background subtraction. We next briefly describe
some of the Cyclops libraries.

3.3.1 Primitive Structural Libraries
An important data structure in any image analysis is ma-

trix operation. Cyclops supports matrices of different depth
of one, eight or sixteen. A matrix is defined as:

typedef struct{
uint8_t depth;
union
{

uint8_t* ptr8;
uint16_t* ptr16;



}data;
uint16_t rows;
uint16_t cols;

} CYCLOPS_Matrix;

where depth determines the size of elements of the matrix
(i.e. 1,8,16), data is the location of the memory that ma-
trix resides and rows and cols are the number of rows and
columns in the matrix. Any library that implements a ma-
trix operation typically supports matrices of different depth.
For example MatrixArithmetic library supports addition of
matrices of depth 8 and 16 (for depth 1 it is not defined)
and MatrixLogic supports matrices of depth 1,8 and 16. In
addition, the default assumption is that values are clipped
when they overflow the depth of the output matrix.

Table-1 shows the current set of supported libraries and
some of their associated operations. The Matrix library en-
ables primitive matrix operations such as conversion of im-
age to a matrix (and reverse). In addition, it enables ex-
tracting of particular planes of an image such as individual
RGB or YCbCr in a form of a matrix and has primitives
for extraction of particular rows or columns of a matrix.
Histogram library generates histogram of the input matrix.
To adapt histogram operation to constrained Cyclops en-
vironment, it can generate only histograms in 4,8,16 or 32
breaking points. This results in efficient implementation of
histogram library. The Sobel library provide derivative of
a matrix vs. its rows or columns. It is implemented us-
ing Sobel algorithm. This library is useful in primitive edge
detection applications. Template library provides matrices
with determined patterns. Currently, only rectangular tem-
plates are implemented.

3.3.2 Advanced Libraries

• Background Subtraction: In many applications, ob-
jects appear on a largely stable background. Back-
ground subtraction is important in many image analy-
sis and manipulation [3]. The main issue is obtain-
ing a good estimate of the background in the face
of changes in illumination, moving objects and grad-
ual environmental variation. One method that usually
works fairly well is to estimate the value of background
pixels using a moving average filter. In this approach
we estimate the value of the background image as a
weighted average of the previous background and the
instantaneous image. More precisely:

Bn = λ × Bn−1 + (1 − λ) × Img

Where Bn is the background image at nth iteration
of the algorithm, Bn−1 is previous background image
and Img is the instantaneous image. In our case,to
further enhance the performance of the library we pick
λ = 0.25 to be able to implement that efficiently with
shift and addition operations.

• Co-ordinate Conversion: In any network based appli-
cation that uses multiple numbers of Cyclops, the re-
sult of individual Cyclops inference should be inter-
changed across the network. In such cases these re-
sults should be interpreted in a unified world coordi-
nate system. This library facilitates changing coor-
dinate system from the Cyclops coordinate system to
a world coordinate system (and reverse). The library

currently support 2-dimensional coordinate conversion
for translation and rotational adjustment.

Object

Camera Coordinate 
System

World Coordinate System

camera

Translation

Rotation

4. PERFORMANCE ANALYSIS
Our analysis of the Cyclops platform focuses on the plat-

form’s power consumption and its temporal characteristics.
Table-2 shows different Cyclops power states, their associ-
ated active clock domains, and the sources that can affect
Cyclops transition in that state. It also shows measured
power consumption of Cyclops in each state. Cyclops nor-
mal states are 1)Image capture, 2)Extended memory access,
3)Permanent memory access, 4)Microcontroller internal and
5)Sleep. During normal operation, based on I/O requests
(i.e. transition sources), Cyclops transparently makes the
resources available and upon releasing those resources,it au-
tomatically relaxes to the lowest possible state. This process
lets the Cyclops be in the sleep state when no resources are
in use.

In addition, Cyclops has two other sleep states, OFF and
Shutdown. In the OFF state Cyclops’ main MOSFET switch
is off and the device is completely turned off. In this state
Cyclops can not be programmed until it is turned ON by
the host. The Shutdown state is the same as sleep state
except that Cyclops shuts down its external memory sub-
system. Since external peripherals are OFF, the contents of
the SRAM are not preserved. Further reduction in power
(i.e. shutdown and OFF states) requires an explicit instruc-
tion from application since the contents of the memory will
be lost in those states.

In practice, Cyclops energy consumption depends on the
power consumption of the different states and their time du-
ration. In the case of the imager, the image capturing time
depends mainly on two parameters: 1) the input image size
and 2) the ambient light intensity. Input image size deter-
mines the size of sensor array and the subsequent number of
necessary operations to convert each pixel to a digital value.
The ambient light intensity determines the necessary expo-
sure time of the sensor array. Fig-7(a) shows the effect of in-
put image size on capture operation for room light intensity.
In all these cases we used the imager’s automatic exposure
feature. In our implementation the CPLD needs two video
frames to synchronize with the imager video stream. This
increases the cost of capture operation significantly.

Fig-7(b) shows Cyclops timing for some structural libraries
and Fig-7(c) shows Cyclops timing for some of our advanced
libraries for different input matrix sizes. In our case, the
timing of these libraries are dominantly determined (almost
linearly) by input matrix size. Most of these operations hap-
pen in Cyclops extended memory access mode.

Table-3 shows power consumption of some known host
nodes [11]. It shows that power consumption of Cyclops
in different states is comparable to these host nodes. In



Mode Components State Active Clock Domains Transition Source Power
MCU SRAM FLASH Image CPLD MCU ASY. CPLD Imager MCU I2C Timer CPLD Trig.

Capture

Image PD/PS† √
S‡ √ √ √ √ √ √ √†† √ √

42mW

Extended
Memory

√ √
S S S

√ √ √ √ √ √ √
W=53mW

Access R=50mW

Permanent
Memory

√
S

√
S

√ √ √ √ √ √ √ √
W=64.8mW

Access R=28mW

MCU
Internal

√
S S S S

√ √ √ √ √ √
23mW

Sleep PD/PS S S S S
√ √ √†† √

0.7mW

Shutdown PD/PS OFF OFF OFF OFF
√ √ √†† √

60µW

OFF OFF OFF OFF OFF OFF ≤ 1µW

Table 2: This table shows Cyclops’ different states, their associated active clock domain, the sources that
can cause a transition out of that state, and the measured power consumption of the device. †) “PD” is
power-down and “PS” is power-save mode. The measurements reported are for “PD” mode.‡“S” stands for
Sleep †† Timer interrupt only is in effect if Cyclops is in PS mode.
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Figure 7: This figure shows the timing cost of different operations in Cyclops, a) frame time and capture
time of images of different sizes, where frame time is imager frame time and capture time is Cyclops capture
time (Active Eye delay). In all the three cases the input and output window sizes are the same, b) structural
library operations c) performing more advanced operations.

Operation Telos Mica2 MicaZ
Mote Standby (RTC on) 15.3µW 57.0µW 81.0µW
MCU Idle 163.5µW 9.6mW 9.6mW
MCU Active 5.4mW 24.0mW 24.0mW
MCU + Radio RX 65.4mW 45.3mW 69.9mW
MCU + Radio TX (0dBm) 58.3mW 76.2mW 63.0mW

Table 3: Power consumption of some of the of well
known sensor network host nodes. These numbers
are cited from [11] for a 3V battery

particular, Cyclops sleep power is comparable to a Mote’s
Standby power and its image capture power is comparable
to the host’s power in radio operation.

There are various improvement that we are considering
for the Cyclops imaging stack. Improving the CPLD’s syn-
chronization with the imager will improve the timing (and
energy cost) of the capture significantly. In addition us-
ing more parallelism in the CPLD logic will reduce the the
number of the CPLD’s clock cycles for performing a pixel
transfer to the SRAM. This would let us increase the imager
clock speed and facilitate faster image capture operation.

5. PUTTING IT ALL TOGETHER
Now, that we have shown a few sample components, we

will examine their composition and interaction within an
application.

5.1 Design Principles
In designing an algorithm for Cyclops, we try to achieve a

low data profile to be able to use its limited computational
and memory resources efficiently. In our experience, the key
issues in the development of a Cyclops application are:

• Data reduction: we keep the image size at minimum
size to the extent that application warrants it. This
can be achieved by selecting the proper image aspect
ratio and output resolution.

• Efficiency in Computational Arrangements: Applica-
tions may have different computational arrangements
for performing a particular inference on an image. We
designed our algorithm such that the arrangement of
its computations, results in rapid reduction of the data
size along the flow of its execution.

• Static Computation: When possible, we perform a
computation and reuse its result(s) multiple times. For
example results of trigonometric functions for coordi-
nate conversion is saved for later reuse. In addition
many libraries embed computation in the form of static
lookup tables to trade program memory space with
computational speed.



We now discuss our test environment and two specific ap-
plications. While these applications do not present a com-
prehensive algorithm and analysis study, they illustrate the
capability and applicability of Cyclops.

5.2 Test Environment
Cyclops has a serial port that connects it directly to PC.

We have developed a TinyOS component (called serialDump)
that enables an application to dump particular locations of
memory into serial port. For example an application that
tests a particular image processing library may dump the
input image as well as output results into a PC. This can
be used for verification of performance of the algorithms on
Cyclops. In cases that the algorithm includes more than
one Cyclops, one can use a serial expansion module to con-
nect multiple Cyclops directly to a PC. In addition there
is a wireless version of serial debugging component (called
radioDump) that enables Cyclops to dump its memory con-
tent via an RF radio link. In this case one Mote is attached
to Cyclops and another Mote is attached to a MIB510 pro-
gramming and serial communication board (from xbow tech-
nology [4]). In this case several wireless Mote pairs can be
operated simultaneously on different frequencies.
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In our experience, it is often more convenient to develop
image processing routines within a high level signal process-
ing language. In such cases we save a series of image frames
from Cyclops on a host PC. Once the algorithms are devel-
oped, they can be ported to Cyclops. In practice, we found
that these debugging capabilities provide us with 1) a rich
set of data to design an algorithm in high level languages (i.e.
matlab) 2) a high degree of visibility into different stages of
an algorithm when it is ported into Cyclops. We now de-
scribe the two applications that we have explored.

5.3 Object detection
Identifying moving objects from a sequence of images is

a fundamental and critical task in many sensing applica-
tions. A common approach is to perform background sub-
traction, which identifies moving objects from the portion of
an image frame that differs significantly from a background
model. There are many challenges in developing a good
background subtraction algorithm. First, it must be robust
against changes in illumination. Second, it should avoid de-
tecting non-stationary background objects such as moving
leaves, rain, snow, and shadows cast by moving objects. Fi-
nally, its internal background model should react quickly
to changes in background such as starting and stopping of
vehicles.

There are many ways to approach this problem and we
chose the basic method [12] to minimize computation re-
quirements. In our case (Fig-8) Cyclops periodically cap-
tures images from the outside world and constructs the sta-
tionary background using the moving average of the series of
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Figure 8: Diagram of Cyclops object detection algo-
rithm.

the images. It further constructs a model of the foreground
based on the absolute difference of the instantaneous im-
age and the constructed background. Here we consider the
absolute value to accommodate the fact that objects may
be darker or brighter than the background. When there
is no object in the scene, such differences are minimal but
presence of an object leads to substantial variation in the
foreground. Using a threshold filter we further construct
the object map. In practice, the absolute value of these
variation depends on the field illumination. We constantly
estimate the intensity of illumination field and adjust the
threshold value as a factor of background illumination. Fi-
nally we apply a blob filter by counting the number of pixels
that exceed a threshold count. In our scheme, we initially
find the location of maximum value of the object map and
extract a sub-matrix of that neighborhood. This reduces
the data size significantly with the expense of losing other
objects in the foreground. This means that we only detect
the object with the biggest impact on the foreground image.

To test performance of our algorithm we deployed Cyclops
outside, in UCLA campus. In our case Cyclops periodically
sleeps for 15Sec intervals and executes the algorithm after
each wake-up. Cyclops then constantly updates an attached
computer with its instantaneous image as well as its instan-
taneous background and foreground images. In addition it
notifies the attached computer if it has detected an object in
the scene. Fig-9 shows our result for six consecutive obser-
vations. Here the top row is instantaneous Cyclops images,
following by its updated background and foreground image.
The bottom row shows Cyclops foreground map in a per-
spective view. In our experiments Cyclops was 78.4% right
and in 21.6% of cases it reported a false/positive or false
negative. We also measured the execution time of our ob-
ject detection algorithm and it runs in 240ms,60.8ms and
16.8ms for image sizes of 128 × 128, 64 × 64 and 32 × 32
respectively.

While these experiments are far from comprehensive, they
showcase the potential capabilities of Cyclops. In our expe-
rience in many cases the background model was polluted
with the foreground objects in the scene. To remedy this
problem we can drop the consecutive frames with the same
object locations. In addition we can add a feedback from
the object detection algorithm to the background updating
model to further reduce such pollution effect. In our exper-
iments the image sizes are 128 × 128 pixels. In practice the
aspect ratio of the scene can be proportional to the expected
object trajectory. For example if the goal is detecting hu-
mans, we do not expect presence of a human in the upper
side of an image and we can use images with modified aspect
ratio to further reduce data size and the execution time of
the algorithm. Finally our blob filter(s) can be proportional
to the aspect ratio of potential objects (i.e. human body).



Figure 9: In this figure the rows from the top are: I) Cyclops instantaneous images, II) its constructed
background, III) its constructed foreground and IV) a perspective plot of the foreground. This data has been
generated by constantly dumping the three images from Cyclops to an attached logging computer.

5.4 Hand Posture Recognition
Visual interpretation of hand gesture is a convenient method

for Human-computer-interaction (HCI). It can be exploited
for contact-less command and control of devices and sys-
tems. There are two categories of such interactions: static
and dynamic. A static gesture is a particular hand configu-
ration and pose represented by a single image. A dynamic
gesture is a moving gesture, represented by a sequence of
images. Here, we focus on applicability of Cyclops for recog-
nition of static gestures.

Gesture recognition is a very hard problem particularly
when the hand occupies only a small portion of the image.
In most cases, the hand must dominate the image for sim-
ple statistical techniques to work. In our case, if Cyclops is
being used in a network, we can assume that due to exsi-
tance of a netowrk link it can be kept at close vicinity of
the human hand. Even at such close distances designing
a vision algorithm that performs reliably for different peo-
ple, with different illumination conditions, and with trans-
lational changes is challenging. In addition the algorithm
should run fast enough so that the user senses no apprecia-
ble delay between making a gesture and the response of the
system. While there are variants of algorithms in the liter-
ature, we have chosen a technique based on the orientation
histogram of the image [13] [14]. The main incentive for
choosing this technique is achieving high speed performance
with reasonable quality (i.e. limited variant of pose). In our

case, Cyclops performs pattern recognition using a trans-
form that converts an image into a feature vector, which
will then be compared with the feature vectors of a train-
ing set of gestures. We use the Euclidean distance of the
features of the input gesture vs. a set of trained features
and find the closest candidate. Our transform is orientation
histogram:

hist(arctan(
dImg/dx

dImg/dy
))

where the orientation term gives robustness to illumination
variation by calculating dominant orientation texture of the
image and histogram term provides translational invariance.
Fig-10 shows block diagram of our system. In our case we
implemented derivative components using Sobel derivative
mask and to further speed up the calculation we used the
absolute value of the Sobel transform. In addition we used
a look-up table for “arctan” operation for faster response
time. We used Cyclops histogram library with 32 braking
point for calculating orientation histogram. To avoid any
floating point operation we kept all intermediate matrices
in 8bit depth integer format. In addition to increase the
performance of our computation we kept the result of each
computation within maximum dynamic range of the follow-
ing block of computation. For example since the value of
“arctan” operation is changing between 0 to 1.570696, in the
implementation of its look-up table, we calibrate its value
to be between 0-255. This improves the performance of the
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Figure 10: Diagram of Cyclops gesture recognition
algorithm.

histogram operation which has an input dynamic range of
0-255.

To test the performance of our algorithm, we applied Cy-
clops to an album of 10 static hand gestures from a subset
of American Sign Language (ASL). We further divided that
album into training and test data sets. We calculated the
orientation histogram of the training images, using their av-
erage as representative of that family. We then compared
the test-sample recognition performance and picked a subset
of best performing gestures as the Cyclops gesture vocabu-
lary. Finally we implemented the algorithm on the Cyclops
and performed a test of recognition performance of the ges-
tures in real-time. Fig-11 shows Cyclops observed gesture
and its associated orientation histogram. This data has been
generated by constantly dumping the Cyclops observing im-
age as well as its orientation histogram and its detected ges-
ture. In practice, for image sizes of 64 × 64 pixels and for
a vocabulary of 5 gestures, in constant illumination we had
92% of successful and 8% of failure recognition. In these
cases the execution time of computation is 448ms. We leave
further improvement and analysis of the performance of our
algorithm as our continuing research.

6. RELATED WORK
Recently, low power CMOS imagers have been subject

of tremendous attention [6] [7] [15] [16] [17]. CMOS im-
agers provide a low power alternative to charged-coupled
device (CCD) imagers which have dominated the high qual-
ity imaging technology for the past decades. Large amount
of research in improving the quality of CMOS imagers and
reducing its size and power consumption has lead to sig-
nificant growth of CMOS technology in commercial devices
and in miniature imaging platforms. The commercialization
process of these products however, has been dominated by
the requirement of the market. This has lead to the class
of devices that are designed to provide human pleasing im-
ages [18] [19] [20] [21] and integrate with powerful processors
in cell phones and personal data assistant devices (PDAs)
that have sufficient memory and clock speed. This is a se-
rious obstacle in using them with less capable devices. In
addition these devices require a complex programming in-
terface. While Cyclops uses a CMOS imager, it hides the
complexity of the device from the host processor by pro-
viding a simple interface. In addition it performs internal
computation to present a form of inference from the image
to the host.

In terms of system integration, low power CMOS video
chips for portable multimedia has been investigated in liter-
atures. In this research the goal is provision of video stream
data at lowest possible power by using high degree of com-
pression and maximum integration of the imagers, signal
processing and radio transmission components. This of-
ten leads to extremely low power data transmission rate for

video streaming in portable devices [22] [23]. The result of
this high level of integration however is minimal access to the
lower layers and lack of flexibility. This is in contrast with
the goal of Cyclops to provide access to the user to design a
sensor for the required imaging operation. In addition these
highly integrated devices are link layer components that can
not be used in a network with on demand image capture and
interpretation requirements.

Finally distributed image processing systems have recently
gained new level of attention due to the ubiquitous avail-
ability of imagers such as webcam. Due to the high power
consumption of these imaging devices and their complex pro-
gramming requirements, many of these systems exploit com-
putationally capable hosts. These hosts are often some sort
of light weight embedded computer with permanent power
requirements and high cost of individual node. This fun-
damentally limits the scale of the experiments. Example of
these cases are distributed attention, surveillance and mon-
itoring systems which often combined with some form of
actuation of the imagers [25] [26] [24]. In these researches,
the goal of the system is detecting interesting objects or
events with maximum efficiency (i.e. coverage, minimum
false-positive). Other examples of these system are animal
surveillance systems where the goal of the system is mon-
itoring the health and condition of animals particularly in
the context of biological experiments [27]. In all these cases
the dimension of the deployment, the complexity of the dis-
tributed algorithm and the power availability assumption
were based on the available classes of imagers and accom-
panied computers. Cyclops on the other hand enables much
larger scale experiments but with much limited amount of
available computation. This is entirely a new regime of op-
eration that has not been explored before.

7. CONCLUSION AND FUTURE WORK
In this paper we presented a vision sensor for wireless sen-

sor networks that performs local image capture and analysis.
We introduced Cyclops and explained its hardware and soft-
ware architecture and provided its power characteristics and
temporal profile. We further demonstrated its applicability
to object detection and gesture recognition. Through this
paper we used the dedicated logic (CPLD) only for frame
capturing. Such dedicated logic resources can be used for
further reduction in processing time and power, particularly
for operations that can be pipelined during image capture
operation.

Cyclops makes it possible to create new vision applica-
tions. It can be used in conjunction with other sensors to
disambiguate ambient conditions or detect motion in secu-
rity or surveillance applications. It can detect changes in
size or shape of the objects for applications such as system
monitoring and diagnostics or for phenology and habitat
monitoring.

While our initial experiments in the application domain
are encouraging, they are far from comprehensive and it will
be the subject of our ongoing research. In particular, future
work will focus on collaborative in-network applications such
as multi-Cyclops object detection in different coverage sce-
narios, hierarchical vision applications and more complex
multi-modal sensing scenarios.



Figure 11: In this figure the rows from the top are: I) Cyclops instantaneous images, II) its constructed Sobel
derivatives in and vertical III) horizontal directions and IV) the polar view of its orientation histogram. This
data has been generated by constantly dumping the images, their derivatives and their orientation histograms
from Cyclops to an attached logging computer.
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