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Abstract 
 
The Poisson and Normal probability distributions poorly match the dark current histogram of a typical image sensor. 
The histogram has only positive values, and is positively skewed (with a long tail). The Normal distribution is 
symmetric (and possesses negative values), while the Poisson distribution is discrete. Image sensor characterization and 
simulation would benefit from a different distribution function, which matches the experimental observations better.  
 
Dark current fixed pattern noise is caused by discrete randomly-distributed charge generation centers. If these centers 
shared a common charge-generation rate, and were distributed uniformly, the Poisson distribution would result. The fact 
that it does not indicates that the generation rates vary, a spatially non-uniform amplification is applied to the centers, or 
that the spatial distribution of centers is non-uniform. Monte Carlo simulations have been used to examine these 
hypotheses. 
 
The Log-Normal, Gamma and Inverse Gamma distributions have been evaluated as empirical models for 
characterization and simulation. These models can accurately match the histograms of specific image sensors. They can 
also be used to synthesize the dark current images required in the development of image processing algorithms. 
Simulation methods can be used to create synthetic images with more complicated distributions.  
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1. Introduction 
 
A great deal of effort has been expended to reduce the dark current levels in CCD and CMOS image sensors, and to 
mitigate its effects1,2.  Dark current creates a spatially-random and temporally-fixed noise pattern that limits the ultimate 
sensitivity of an imaging system.  Because the pattern is fixed and does not vary from frame to frame, it must be 
associated with irregularities in the pixel. It is generally understood to originate from surface defects at the SiO2/Si 
interface and bulk defects in the silicon that introduce mid-band traps which provide a mechanism for thermally-excited 
carriers to transition between the valance and conduction bands3,4. This paper is concerned with the simulation and 
characterization of this kind of random FPN dark current. The constant dark current background associated with 
diffusion current and the fixed row and column patterns that are created by imperfect referencing and by column 
processing circuits are not considered.  
 
Dark current is usually described only by its second order statistics, and frequently just by its mean value5,6.  Such 
simple descriptions are misleading because they contain the implicit presumption that the probability distribution is 
Gaussian.  In fact, the Gaussian distribution poorly describes the dark current of a modern image sensor, as shown in 
Figure 1. Experimentally observed dark current distributions have a significant positive skew. The skew causes a dark 
current image to appear like the starry night sky, rather than the snowy screen of a TV set tuned to an empty channel.  
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Figure 1: CMOS APS 3T-pixel dark current histogram compared to the Normal distribution with the same 2nd order statistics 
 
Because dark current is associated with randomly distributed defects, use of the Poisson distribution might seem 
appropriate. However, the Poisson distribution is discrete and its positive skew is only visible when the defect density 
(and therefore the discreteness of the distribution) is most visible. Computer simulations are used in section two of the 
paper to determine which physical mechanisms might yield distributions with the correct shape. It is concluded that 
some sort of spatial non-uniformity is required to match the experimental data.  
 
Although the simulation models are useful for probing the mechanisms behind dark current, they do not lead to 
analytical solutions that are easy to apply to characterization and simulation. Characterization methods are needed that 
can describe both the mean value and shape of the distribution with a few parameters. Simulation methods are needed 
that can produce realistic-looking synthetic dark current images for the development and testing of image processing 
algorithms. Consequently a number of common distributions with significant positive skew are considered as empirical 
models in the third section of the paper. The Log-Normal distribution is shown to provide an effective model for a 3T 
APS CMOS sensor with moderately high dark current, while the Gamma distribution serves as an acceptable model for 
an inverted CCD with very low dark current. Both distributions are greatly superior to the Gaussian distribution in this 
application.   
 
Even though the control parameters are difficult to fit, the simulation models can still serve as effective sources of 
synthetic dark current data. They may provide the best solution for image processing pipeline algorithm development. 
 

2. Simulations 
Computer simulations were used to evaluate various hypotheses about the spatial distribution of defects and the 
generation rate distribution of these defects. The Poisson case (uniform spatial distribution of defects with a single 
generation rate) is presented in the first subsection. In subsequent subsections, the following hypotheses are considered: 

1) The generation rates of defects are described by an additional random distribution. 
2) The generation rate of defects is spatially non-uniform because of field enhancement. 
3) The distribution of defects is non-uniform. 



In each section the methodology that was used to perform the simulation is described, followed by simulation results 
and discussion. 
 
The first hypothesis is shown to be inadequate. The experimental observed dark current distribution can not be 
explained by any distribution of generation rates. The distributions produced by the second and third hypotheses are 
consistent with experimental observations.  Although the field enhancement hypothesis has the strongest physical basis, 
it does not yield an analytical form that would be useful for characterization and simulation. The non-uniform defect 
hypothesis does not have a strong basis, but it suggests a useful empirical model.   

2.1. Uniform spatial distribution, single generation rate (Poisson distribution) 
If the defects were uniformly distributed and all shared a common generation rate, a Poisson distribution7 of dark 
current would result.  
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2.1.1. Results 
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Figure 2: Poisson distribution, 3 defects per pixel and 10 defects per pixel (average) 
 

2.1.2. Discussion 
The Poisson distribution shown in Figure 2 is discrete. Although it is positively skewed when the number of defects per 
pixel is small, the skew disappears when the number of defects is large and the shape of the Poisson distribution 
approaches the shape of the Gaussian (Normal) distribution.  
 
The SiO2/Silicon surface state density is about 10^9/cm^2, or 15/um^2 [see ref. #1]. Consequently hundreds of defects 
would be expected in a CCD or CMOS surface photodiode or photogate.  The large surface hole populations in buried 
photodiodes and inverted CCDs fill the surface traps, reducing their effect. However the total number of active traps 
(surface and bulk) must still be large (>10), or a significant number of pixels with zero dark current would be observed 
in experimental measurements.  



 
Defects outside the photodiode that spread their charge to many pixels by diffusion would eliminate the discrete 
character of the distribution. However there is no physical mechanism for this kind of behavior. The Shockley-Hall-
Read equation predicts that charge generation outside of the depletion region (between pixels) should be exceedingly 
small because of the high free carrier density. 
 
The Poisson distribution is not consistent with experimental observations. The distribution associated with a large 
number of defects per pixel would not be skewed, and the experimental distribution does not appear to be discrete. 

2.2. Distribution of generation rates 
In the preceding case, all defects were assumed to share a common generation rate. It is more realistic to assume that a 
distribution of generation rates exists. If the distribution was broad enough, it might blend the discrete peaks of the 
Poisson distribution together and allow a continuous, positively skewed, distribution to emerge when the defect density 
is low. Alternatively, an asymmetric generation rate distribution might lead to a skewed distribution when the defect 
density is high. These two propositions are examined in this subsection. 

2.2.1. Methodology 
A “fair” Roulette algorithm was used to simulate the effect of distributed generation rates in Matlab. Initially an empty 
pixel array p[i] of length N was created (e.g. the Roulette wheel). Subsequently an array of N*µ uniformly distributed 
random defect coordinate values x[i, µ] were created, where µ is the average number of defects per pixel (e.g. N*µ  is 
the number of Roulette balls). Another array of random variables g[i, µG, σG] of the same length was created to 
represent the generation rate distribution, according to the particular distribution that was used in the simulation 
(Gaussian or exponential). The generation rate distribution was characterized by parameters µG and σG. Iteration was 
used to examine every element x of the defect position array. The pixels array elements at those locations (determined 
by floor(x[i])) were incremented by g[i]. The process was repeated to include more than one type of defect in the 
simulation. The resulting probability distributions were obtained by computing the histograms of the pixel array values.  

2.2.2. Results
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             Figure 3: Gaussian distribution of generation rates, 
             generation rate standard deviation = 0.2          
 
Figures 3 and 4 resulted from simulations that utilized a Gaussian distribution of generation rates. In both cases, a small 
value of only three average defects per pixel was assumed. When the standard deviation of the generation rate 
distribution is small, the underlying peaks of the Poisson distribution are clearly visible. When the standard deviation is 
large, the upper peaks of the Poisson distribution are smeared together. However a distinct discrete peak at zero dark 
current remains in both cases.   
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Figure 4: Gaussian distribution of generation rates, 
generation rate standard deviation = 1.0    
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Figure 5: Exponential distribution of generation rates,  
10 defects per  pixel 
 
Figure 5 resulted from a simulation in which a highly asymmetric exponential generation rate distribution was used. The 
generation rate distribution is shown in Figure 6. A moderate average number (10) of defects per pixel was assumed, 
which had the benefit of eliminating the discrete peak at zero dark current. However the distribution that resulted wasn’t 
significantly skewed. 
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Figure 7: Gaussian distribution of generation rates,  
with two distinct mechanisms 
 
Two distinct types of defects were modeled in the simulation that resulted in Figure 7.  A high density of 10 defects per 
pixel was assumed for the defect with an average generation rate of one. A low density of one defect per pixel was 
assumed for the defect with an average generation rate of 30 (representing a metal ion impurity). A Gaussian 
distribution of generation rates was assumed in both cases. The distinct Poisson peaks of the high generation rate 
species are clearly visible. The simulation results are very similar to the experimental histogram in Figure 8, from 
reference 8.   

2.2.3. Discussion 
If the average number of defects per pixel is small, the discrete nature of the underlying Poisson distribution can not be 
concealed by the application of a generation rate distribution. A broad generation rate distribution can only spread the 
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Figure 8: Experimental dark current distribution with deep-level 
traps [from ref. #8 ]. 



positive peaks; it can not conceal the significant peak at zero dark current (which is not observed experimentally). The 
appearance of discrete peaks in the experimental distribution of Figure 8 substantiates this hypothesis.  
 
If the average number of defects per pixel is large, the central limit theorem comes into force. The net distribution is 
obtained by convolving the generation rate distribution against itself “n” times for each peak in the Poisson distribution 
and then summing the weighted results. The final distribution approaches a Gaussian, irrespective of the original shape 
of the generation rate distribution.  
 
Experimentally observed distributions are continuous and positively skewed. Therefore they can not be explained by 
defects that are uniformly distributed in position, irrespective of the distribution of generation rates. Some sort of spatial 
non-uniformity is required. Either the defects behave differently based on spatial location, or the distribution of defects 
is non-uniform. These hypotheses will be examined in the next two subsections.   

2.3. Spatial variation of field enhancement 
The Poole-Frenkel effect describes the increase in emission rate from a defect in the presence of an electric field9. 
Because the electric field varies across the photodiode (or potential well, in the case of a CCD), the charge generation 
from some defects is enhanced more than others. In order to calculate the distribution resulting from this effect, one 
would need to know the field profile inside the pixel (presumable from a MEDICI simulation) and the defect 
distribution density in the bulk and on the surfaces. This kind of calculation has been performed for proton-irradiated 
CMOS APS sensors resulting in accurate estimation of the dark current distribution10. The same mechanism must apply 
to defects that are not the result of proton irradiation, and is likely to be the explanation for the skewed dark current 
distribution.    

2.3.1. Methodology 
The Roulette method described in the previous section was modified slightly to accommodate field enhancement.  
The degree of field enhancement is determined by the fractional position of the defect within the 1-D pixel, as shown in 
Figure 9. The field enhancement is described as a function of the fractional position, ∆x (= x[i] – floor(x[i])). In these 
simulations the function gFE(∆x) = 1 + a exp(b * ∆x)/exp(b) was arbitrarily chosen to describe the gain due to field 
enhancement. Parameter “a” controls the maximum gain due to field enhancement, while parameter “b” controls the 
distribution of field enhancement across the pixel. The shape of this function is unimportant: all that matters is its 
histogram. Since the cumulative probability for electric field in the volume of the pixel falls of rapidly with electric field 
strength, this provides a reasonable model. A Gaussian distribution of generation rates was also included in the 
simulation, with a mean value of one and a standard deviation of 0.3. In this case the pixel elements at the locations 
determined by floor(x[i])) were incremented by gFE(∆x[i]) * g[i]. 
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                                                               Figure 9: Field enhancement method 
 

2.3.2. Results 
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Figure 10: Exponential variation of field enhancement,  
10 defects per pixel 
 
The histograms in Figures 10 and 11 resulted from simulating the effect of field enhancement with different parameters. 
In both cases, the maximum field enhancement gain is high, but the fraction of the pixel that provides significant field 
enhancement is small. By varying the parameters it is possible to produce a wide range of different positively skewed 
distributions. When the defect density is very high, the intrinsic variance of the defect distribution is so high that it 
swamps out the variable gain effect, and a Gaussian-like distribution results (as shown in Figure 10). A wide range of 
positively skewed single-peaked distributions can be generated with this method. However the choice of parameters is 
critical. 

2.3.3. Discussion 
Since the field enhancement model has a strong physical basis, an associated analytical distribution would be useful for 
characterization and simulation. An analytical derivation can be approached by dividing each 1-D pixel into a number 
of discrete sections. The number of defects in each section would be described by a Poisson-distributed random variable 
xi with distribution Px(xi). The number of defects would be multiplied by the field enhancement gain, ai, for that section, 
resulting in a new random variable yi, with distribution (1/ai) Px(yi/ai).  The sum of the yi would represent the dark 
current of the pixel. Therefore the dark current distribution would be represented by the convolution of the distributions 
of all of the yi. The problem can be transformed into one of multiplication in the Fourier domain, but a simple 
representation for the product of a number of scaled distributions did not present itself to the author. However the model 
is still useful for generating synthetic dark current, given the correct empirically-derived parameters.  

2.4. Non-uniform spatial distribution 
In all of the previous cases, the spatial distribution of defects was assumed to be uniform. In this case a non-uniform 
spatial distribution is considered. The non-uniform distribution represents the clustering of defects. This might occur if 
some defects tended to attract (e.g. getter) other defects. 

2.4.1. Methodology 
The non-uniform spatial distribution of defects was simulated by using an “unfair” Roulette algorithm. In the unfair 
algorithm, the width of each Roulette bin grows with the number of balls (defects) that it contains, as shown in Figure 
12. The “attraction” (bin width) function is chosen arbitrarily. In this case an attraction function of w  = 1 + a*n was 
used. A separate array was used to store the positions of the bin boundaries. The positions are updated after every “spin” 
of the wheel. The length of the uniform defect position distribution is increased after each spin to accommodate the 
growing “circumference” of the wheel. In order to simplify the calculation, the distribution of generation rates was 
ignored. Based upon previous results, the number of defects per pixel was assumed to be large. 
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                                     Figure 12: Unfair “Roulette” method 

2.4.2. Results 
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Figure 13: Histogram resulting from non-uniform spatial distribution of pixels 
 
The histogram in Figure 13 resulted from the non-uniform spatial distribution of pixels, with a linear “attraction” factor 
of 0.4. A value of ten was chosen for the mean number of defects per pixel. As shown previously, a discrete peak at zero 
dark current becomes apparent when the mean defect number is small. When the “attraction” factor is decreased to 0.1, 
the distribution becomes almost Gaussian. When it is increased to 1.0, it becomes almost exponential. The discreteness 
of the distribution is visible because the underlying generation rate distribution has been neglected. As with the previous 
case, a wide range of distribution shapes can be produced by this method.  

2.4.3. Discussion 
Even though this model is conceptually simpler than the previous one, it is computationally the least efficient. The 
recalculation of the bin widths at each step prevents the execution from being effectively parallelized or pipelined. The 
model is capable of producing highly skewed distributions, even when the average defect density is high. However the 
choice of the attraction function is entirely arbitrary and no physical basis for this behavior has been reported.  
 
Another approach to producing a non-uniform distribution would be to first create a uniform distribution and then to 
operate on the resulting values to further increase the defect count in pixels which already have high defect counts. An 
operation that has this characteristic is exponentiation. However the exponentiation of a Gaussian random variable 
results in the familiar Log-Normal distribution, which is considered as an empirical model in the next section.     
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3. Empirical models 
 
Although the simulations have provided physical insight into the potential causes the skewed dark current distribution, 
they have not yielded an analytical model that is suitable for characterization and simulation. Consequently an empirical 
model is required. The ideal empirical model would have the following characteristics: 
1) It would have a simple analytical representation 
2) It would posses only a few somewhat orthogonal control parameters (e.g. scale and shape) 
3) The optimum control parameters could be easily determined from the experimental data 
4) A simple and efficient method for simulating the distribution would exist.  
 
Many common single-peaked positive distributions don’t fit the experimental data very well, including the Normal, 
Maxwell, Rayleigh and Weibull distributions. Three that “baer” closer examination are the Log-Normal, Gamma and 
Inverse Gamma distributions. 

3.1. The Log-Normal PDF 
The Log-Normal distribution11 is suggested by the non-uniform defect density simulation model. If a Gaussian 
distribution results from distributing defects uniformly, then perhaps a non-uniform distribution can be created by 
“pulling” on the tail of a Gaussian.  This is exactly what the Log-Normal distribution does: the values are exponentiated, 
“stretching” the tail of the Gaussian distribution much more than the peak.  Other related distributions that used 
polynomial “stretching” functions were investigated, but they did not produce realistic distributions. The Log-Normal 
PDF is: 
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Although the expressions for the mean and variance of the Log-Normal distribution are complicated, the parameters of 
the distribution can easily be obtained by taking the logarithm of the experimental data. The parameters µ and σ are 
simply the mean and standard deviation of the log data. 
 
Simulation of the Log-Normal distribution is also very simple. An array of normally distributed random variables is 
generated and then simply exponentiated.   

3.2. The Gamma PDF  
The Gamma PDF12 is a continuous generalization of the discrete Poisson distribution. The Gamma PDF is: 
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The mean of the Gamma PDF is (k θ), while the variance is (k θ^2).  These expressions can be inverted to yield the 
parameters of the distribution in terms of the mean and variance of an experimental distribution: 
 

θ = variance/mean;   k = mean2/variance 
 

Methods for generating random variables with the Gamma distribution are well known, and available in the MATLAB 
statistics toolkit and in the Mathematica continuous distribution statistics package. 

3.3. The Inverse Gamma PDF 
The Inverse Gamma PDF13 is the distribution of the inverse of the Gamma random variable. The Inverse Gamma PDF 
is: 
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The mean of the Inverse Gamma distribution is β/(α-1) (for α > 1) and the variance is β2/(( α -1)2(α -2)) (for α > 2). 
These equations must be solved numerically to determine α and β from the parameters of the experimental distribution. 
 
Methods for generating random variables with the Inverse Gamma distribution are known, but are not widely 
accessible.  

3.4. Fitting experimental data to the model 
The fits of the three empirical distributions to the dark current histogram of a 3T CMOS APS sensor are shown in 
Figure 14. In this case the second order statistics of the experimental distribution were used to determine the best fit 
parameters. The parameters used were: Gamma {k = 3.56, θ = 4.31}, Inverse Gamma {α = 5.56, β = 69.9}, and Log-
Normal {µ = 2.61, σ = 0.498}.  Although the Log-Normal distribution matches the experimental data very well, it is 
hard to attach any physical significance to the result. The Log-Normal distribution usually applies to the product of a 
large number of independent random variables. There is no related “product” mechanism in an image sensor. 

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Dark current [arb.]

P
ro

ba
bi

lit
y 

de
ns

ity

Gamma PDF
Inverse Gamma PDF
Log-Normal PDF
CMOS APS data

 
Figure 14: Comparison of Log-Normal PDF  
with 3T CMOS APS histogram 
 
The fits of the three distributions to the dark current histogram of an inverted CCD are shown in Figure 15. In this case 
non-linear curve fitting was used to obtain the fitting parameters (parameters obtained from the second order statistics of 
the experimental distribution produced poor fits). The parameters used were: Gamma {k = 1.36, θ = 370}, Inverse 
Gamma {α = 0.698, β = 177.6}, and Log-Normal {µ = 5.98, σ = 1.123}.  The Gamma distribution provided the best 
match. The Inverse Gamma and Log-Normal distributions did not decay rapidly enough at high dark current levels. All 
three functions provide a much better fit than the Normal PDF does.  
 
The best fit of the field enhancement simulation model to the dark current histogram of the inverted CCD used in Figure 
15 is shown in Figure 16. A scale factor was added to the model to account for the charge to voltage conversion ratio, 
electronic amplification and digital scaling. In this case the parameters were obtained by trial and error.  The parameters 
were: {average defect density = 3 / pixel, maximum field enhancement = 15, exponent = 8, generation rate standard 
deviation = 0.35, scale factor = 50}.  The maximum field enhancement value of 15 is consistent with the field strengths 
reported in reference #10. An accurate fit could not be obtained when a higher average defect density was used. As a 
consequence, the distribution resulting from the simulation has a significant discrete peak at zero dark current which is 
not visible in the figure. The physical significance is unclear. These zero values could be randomly replaced with 
positive values from other pixels without changing the shape of the distribution. This method could be used to create 
synthetic dark current images that could be used in the development of image processing algorithms. 
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inverted CCD histogram [data courtesy of Dalsa] 
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Figure 16: Comparison of field enhancement simulation with inverted CCD histogram. 

3.5. Discussion 
The best empirical distribution for dark current characterization and simulation is dependent on the image sensor.  The 
Log-Normal distribution works very well for conventional 3T APS CMOS sensors with comparatively high dark 
current. The Gamma distribution works reasonably well for inverted CCD sensors with low dark current. When these 
analytical distributions don’t fit well enough, a simulation model can be used instead. All of these solutions provide 
much more accurate characterization and simulation than the commonly used Gaussian model.    

4. Conclusions 
 
A number of different potential explanations for the positive skew observed in experimental dark current distributions 
have been examined by computer simulation. A number of important conclusions can be drawn from the simulation 
results: 

1. When the average number of defects per pixels is low (< 5), the probability that many pixels will contain no 
defects becomes significant. Since a spike is not observed in empirical dark current distributions at zero dark 
current, the number of defects per pixel must be large.  Alternatively, the experimental data may be masked by 
temporal noise. 

2. A distribution of generation rates is not sufficient to explain positively skewed experimental distributions. 
When the average defect density is low, the generation rate distribution is incapable of masking the discrete 
nature of the underlying Poisson distribution. When the average defect density is high, the central limit 
theorem causes the resulting dark current distribution to approach a Gaussian, irrespective of the shape of the 
generation rate distribution. 

3. Some kind of spatial inhomogeneity is required to explain the experimental distributions. The inhomogeneity 
can appear as non-uniform gain applied to uniformly distributed defects, or as non-uniformly distributed 
defects themselves. The Poole-Frenkel field-induced barrier lowering effect provides a physical mechanism for 
the former, while no physical mechanism has been reported for the latter.  

 



Several different positively-skewed distributions have been proposed as empirical replacements for the Gaussian 
distribution in characterization and simulation. Of these, the Log-Normal distribution provides the best results. Its 
second order statistics can be used to easily fit the distribution to data from 3T APS CMOS sensors. It also provides a 
simple simulation model, since synthetic dark current images can be generated by exponentiating images created by 
Gaussian random number generators. However the Log-Normal distribution did not fit the experimental data from an 
advanced inverted CCD very well. The Gamma distribution produced an acceptable fit in this case. When these 
distributions are inadequate, the field enhancement simulation model can be used to obtain a closer fit.   
 
Other important characteristics of dark current, such as the temperature dependence14,15 and random telegraph 
behavior16,17, are also begging for better characterization and simulation models. This presents a fruitful avenue for 
future research.  
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